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What is logic?

•Logic is the study of valid reasoning. 

•That is, logic tries to establish criteria to decide 
whether some piece of reasoning is valid or 
invalid.

•OK, so then what do we mean by ‘valid 
reasoning’?



Reasoning

•A piece of reasoning consists of a sequence of 
statements, some of which are claimed to 
follow from previous ones. That is, some are 
claimed to be inferred from others.

•Example: “Either the housemaid or the butler 
killed Mr. X. However, if the housemaid would 
have done it, the alarm would have gone off, 
and the alarm did not go off. Therefore, the 
butler did it.”



Valid Reasoning

•While in every piece of reasoning certain 
statements are claimed to follow from others, 
this may in fact not be the case.

•Example: “If I win the lottery, then I’m happy. 
However, I did not win the lottery. Therefore, I 
am not happy.”

•A piece of reasoning is valid if the statements 
that are claimed to follow from previous ones 
do indeed follow from those. Otherwise, the 
reasoning is said to be invalid.



Sound Reasoning

• Not all valid reasoning is good reasoning.

• Example: “If I win the lottery, then I’ll be poor. So, 
since I did win the lottery, I am poor.”

• This piece of reasoning is valid, but not very good, 
since it assumed an absurd claim (‘If I win the 
lottery, I’ll be poor.’ Huh??)

• Sound reasoning is valid reasoning based on 
acceptable assumptions.



Truth and Implication

•Logic studies the validity of reasoning.

•Logic does not study soundness.

•Therefore, logic alone cannot tell us whether an 
argument is good. Hence, logic alone is not a 
guide to truth. 

• Instead, logic can tell us, assuming certain 
things to be true, what else will be true as well. 
Thus, logic is a guide to implication.



Arguments, Premises and Conclusion

• In logic, pieces of reasoning are analyzed using 
the notion of an argument

•An argument consists of any number of 
premises, and one conclusion

•Again, in logic, we are merely interested in 
whether the conclusion follows from the 
premises: we are not interested in whether 
those premises are true or acceptable.



Deductive Validity vs 
Inductive Validity

•An argument is said to be deductively valid if, 
assuming the premises to be true, the 
conclusion must be true as well.

•An argument is said to be inductively valid if, 
assuming the premises to be true, the 
conclusion is likely to be true as well.



Argument Forms

• “If I win the lottery, then I am poor. I win the 
lottery. Hence, I am poor.”

•This argument has the following abstract 
structure or form: “If P then Q. P. Hence, Q”

•Any argument of the above form is valid, 
including “If flubbers are gook, then trugs are 
brig. Flubbers are gook. Hence, trugs are brig.”!

•Hence, we can look at the abstract form of an 
argument, and tell whether it is valid without 
even knowing what the argument is about!! 



Formal Logic

•Formal logic studies the validity of arguments 
by looking at the abstract form of arguments.

•Formal logic always works in 2 steps:
•Step 1: Use certain symbols to express the 
abstract form of premises and conclusion.

•Step 2: Use a certain procedure to figure out 
whether the conclusion follows from the 
premises based on their symbolized form 
alone.



Example Step 1: Symbolization

•Use symbols to represent simple propositions:
•H: The housemaid did it
•B: The butler did it
•A: The alarm went off

•Use further symbols to represent complex 
claims:
•H  B: The housemaid or the butler did it
•HA: If the housemaid did it, the alarm 
would go off

•~A: The alarm did not go off



Example Step 2: Symbolization

•Transform symbolic representations using 
basic rules that reflect valid inferences:

H  B

HA

~A

~H

B
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Propositional Logic

•Propositional Logic studies validity at the level 
of simple and compound propositions.

•Simple proposition: An expression that has a 
truth value (a claim or a statement). E.g. “John 
is tall”

•Compound proposition: An expression that 
combines simple propositions using truth-
functional connectives like ‘and’, ‘or’, ‘not’, and 
‘if … then’. E.g. “John is tall and Mary is smart



Predicate Logic

•Predicate Logic extends Propositional Logic by 
adding individuals, predicates, and quantifiers

• Individuals: ‘John’, ‘Mary’

•Predicates: ‘tall’, ‘smart’

•Quantifiers: ‘all’, ‘some’



Uses of Formal Logic

•Evaluation/Checking: 
• Formal logic can be used to evaluate the validity 
of arguments.

•Clarification/Specification: 
• Formal logic can be used to express things in a 
precise and unambiguous way.

•Demonstration/Proof: 
• Formal logic can be used to figure out what 
follows from a set of assumptions.

•Computation/Automated Reasoning: 
• Formal logic can be used for machine reasoning.



The Method of Formal Logic

• Step 1: Use certain symbols to express the 
abstract form of premises and conclusion.

• Step 2: Use a certain procedure to figure out 
whether the conclusion follows from the 
premises based on their abstract 
symbolizations.



FOL

• FOL (the language of First-Order Logic): The 
formal language that we use to symbolize 
statements 



Individual Constants

•An individual constant is a name for an existing 
object.

•Examples: john, marie, a, b

•Each name is assumed to refer to a unique 
individual, i.e. we will not have two objects with 
the same name.

•However, each individual object may have 
more than one name.



Predicates

•Predicates are used to express properties of 
objects or relations between objects.

•Examples: Tall, Cube, LeftOf, =

•Arity: the number of arguments of a predicate 
(E.g. Tall: 1, LeftOf: 2)



Atomic Sentences

•Combining one predicate with the proper 
number of individual constants yields an atomic 
sentence.

•Examples: Tall(john), LeftOf(a,b), a=a

•Prefix notation: the predicate precedes the 
individual constant(s). E.g. Tall(marie)

• Infix notation: the predicate is in between the 
individual constants. E.g. a=b



Argument, Premises, Conclusion, 
Validity and Soundness

•An argument consists of 0 or more premises
and 1 conclusion.

•An argument is (deductively) valid iff:
• assuming its premises are true, its conclusion must 

be true as well.

•An argument is (deductively) sound iff:
• it is valid, and 
• its premises are true.

• In pure logic, we are only interested in validity.



Demonstrating Invalidity

•An argument is valid if it is impossible for the 
conclusion to be false while the premises are 
true.

•Thus, to demonstrate invalidity, all we have to 
do is to demonstrate that it is possible for the 
conclusion to be false while the premises are 
true.

•The easiest way to do this is to come up with a 
scenario (or possible world) in which all 
premises are true and the conclusion false.



Demonstrating Validity

• To demonstrate validity, we have to show that there is 
no possible way for all premises to be true and the 
conclusion false all at the same time.

• Showing a scenario in which all premises are true, and 
in which the conclusion is true as well, does not
demonstrate validity, b/c there may still be a different 
scenario in which all premises are true and the 
conclusion false.

• Obviously, this holds true in general. Hence, showing 
one possible scenario cannot demonstrate validity!

• Of course, we could try and generate all relevant 
possible worlds, but this method is either impractical
(there are too many), or simply impossible (there are 
infinitely many).



Step-by-step Reasoning

•OK, so what do we do? Well, we can do what 
we do in everyday reasoning: we start with the 
premises, and we gradually work our way to the 
conclusion: “Either the housemaid or the butler 
killed Mr. X. Now, we know that if the 
housemaid would have done it, the alarm would 
have gone off. But, the alarm did not go off. 
Therefore, the housemaid did not do it. So, 
since it was either the housemaid or the butler, 
it must have been the butler.”



Structure of the Argument

• 1. Either the housemaid or the butler did it.

• 2. If the housemaid did it, the alarm would have 
gone off.

• 3. The alarm did not go off.

• 4. (2+3) The housemaid did not do it.

• 5. (1+4) The butler did it.



Intermediate Results

• In the previous proof, claim 4 (the housemaid 
did not do it) is called an intermediate result (or 
sub-conclusion).

• Intermediate results reflect steps in our 
reasoning.

• Intermediate results are important, b/c:
• If each of the steps is valid, then the reasoning as a 

whole is valid as well (i.e. conclusion validly follows 
from the premises).

• The step-by-step reasoning counts as a proof if each 
of the steps is obviously valid.



Proofs

•A proof is a sequence of statements, starting 
with premises, followed by intermediate 
conclusions, and ended by the conclusion, 
where each of the intermediate conclusions, 
and the conclusion itself, is an obvious 
consequence from (some of) the premises and 
previously established intermediate 
conclusions.



Formal Proofs

•Formal proofs try to formalize proofs by:
• Symbolizing the statements in a proof (again, we 
will use FOL for this)

• Spelling out what we count as an ‘obvious 
consequence’ based on this symbolization



What is ‘obvious’ is not obvious

•Problem: ‘obvious’ is a bit of a vague term, as 
what is obvious to some, may not be obvious to 
others. So, what are going to count as 
‘obvious’?

•We are going to play it safe: In formal proofs, 
we are only going to allow steps that are about 
as obvious as we can get. Thus, we are only 
going to allow ‘baby inferences’.

• In formal proofs, bigger inferences, which may 
still be obvious to many (if not all of us), will still 
have to be broken up into smaller ones!



Inference Rules

• Inference rules formalize these ‘baby inferences’.

• Example: An inference rule may indicate that if you 
have a statement of the form ‘a=b’ then you can 
infer a statement of the form ‘b=a’. Notice:

• This inference rule is purely symbolic/syntactic/formal

• This inference rule reflects an obvious inference

• Inference rules may need any number of 
statements from which the new statement is 
inferred (though with too many statements, the rule 
may no longer be considered ‘obvious’). 

• Most inference rules require one or two statements. 
• Some inference rules require no statements at all. 



Formal Systems

•There are many formal systems of logic, each 
with their own predefined set of inference rules:

• First of all, the nature of the inference rules depends 
on the symbols that the system uses to express 
statements.

• Moreover, even if two systems use the same 
symbols, they may still have different inference rules.



Connectives: From Atomic Claims to 
Complex Claims

•So far, we have only seen atomic claims: 
claims consisting of a single predicate. E.g. “a 
is to the right of b”.

•Boolean connectives: and, or, not, if … then, if 
and only if

•We can combine atomic claims using boolean
connectives to form complex claims. E.g. 
“Either a is to the right of b or a is to the left of 
b”. 



Propositional Logic

•Propositional Logic is the logic involving 
complex claims as constructed from atomic 
claims and boolean connectives.



Truth-Functional Connectives

•Boolean Connectives are usually called truth-
functional connectives.

•The truth value of a complex claim that has 
been constructed using a truth-functional 
connective is a function of the truth value of the 
claims that are being connected by that 
connective.



Negation

•The claim “a is not to the right of b” is a 
complex claim. It consists of the atomic claim “a 
is to the right of b” and the truth-functional 
connective “not”.

•We will call the above statement a negation.

•To express negations, we use the symbol ‘’

• ‘’ should be put in front of what you want to be 
negated.

•Thus, the above statement will be symbolized 
as: RightOf(a,b)



Truth-Table for Negation

• ‘’ is truth-functional, since the truth-value of a 
negation is the exact opposite of the truth-
value of the statement it negates.

•We can express this using a truth table:

P P

T
T
F

F



Conjunction

•The claim “a is to the right of b, and a is in front 
of b” is called a conjunction.

•The two claims that are being conjuncted in a 
conjunction are called its conjuncts.

•To express conjunctions, we will use the 
symbol ‘’

• ‘’ should be put between the two claims.

•Thus, the above statement will be symbolized 
as: RightOf(a,b)  FrontOf(a,b)



Truth-Table for Conjunction

• ‘’ is truth-functional, since a conjunction is 
true when both conjuncts are true, and it is 
false otherwise.

•Again, we can show this using a truth table:

P P  Q

T

T
F

F

Q

T

FF

F

F
F
T
T



Disjunction

•The claim “a is to the right of b, or a is in front 
of b” is called a disjunction.

•The two claims that are being disjuncted in a 
disjunction are called its disjuncts.

•To express disjunctions, we will use the symbol 
‘’

• ‘’ should be put between the two claims.

•Thus, the above statement will be symbolized 
as: RightOf(a,b)  FrontOf(a,b)



Truth-Table for Disjunction

• ‘’ is truth-functional, since a disjunction is true 
when at least one of its disjuncts is true, and it 
is false otherwise.

•Again, we can show this using a truth table:

P P  Q

T

T
F

T

Q

T

FF

T

F
F
T
T



Combining Complex Claims: 
Parentheses

•Using the truth-functional connectives, we can 
combine complex claims to make even more 
complex claims.

•We are going to use parentheses to indicate 
the exact order in which claims are being 
combined.

•Example: (P  Q)  (R  S) is a conjunction of 
two disjunctions.



Parentheses and Ambiguity

•An ambiguous statements is a statement 
whose meaning is not clear due to its syntax. 
Example : ”P or Q and R”

• In formal systems, an expression like P  Q  R 
is simply not allowed and considered 
unsyntactical.

•Claims in our formal language are therefore 
never ambiguous.

•One important application of the use of formal 
languages is exactly this: to avoid ambiguities!



Exclusive Disjunction vs Inclusive 
Disjunction

•Notice that the disjunction as defined by ‘’ is 
considered to be true if both disjuncts are true. 
This is called an inclusive disjunction. 

•However, when I say “a natural number is 
either even or odd”, I mean to make a claim 
that would be considered false if a number 
turned out to be both even and odd. Thus, I am 
trying to express an exclusive disjunction.



How to express Exclusive Disjunctions
•We could define a separate symbol for 
exclusive disjunctions, but we are not going to 
do that.

•Fortunately, exclusive disjunctions can be 
expressed using the symbols we already have: 
(PQ)  (PQ)

P (P  Q)  (PQ)

T

T
F

T

Q

T

FF

T

F
F
T
T

F

T

F

F
T

F

T

T
T

F

F

T

!



Logically Equivalent Statements

•Two statements are logically equivalent if their 
truth-conditions are identical.

•Simply put, two statements are logically 
equivalent if it is impossible for one statement 
to be true while the other is false.

•To express that two statements P and Q are 
logically equivalent, we will write: PQ



Some Important Equivalences

•Double Negation: 
• P    P

•DeMorgan:
• (P  Q)  P  Q
• (P  Q)  P  Q

•Distribution:
• P  (Q  R)  (P  Q)  (P  R)
• P  (Q  R)  (P  Q)  (P  R)



Some Other Equivalences

•Commutation:
•P  Q  Q  P
•P  Q  Q  P

•Association:
•P  (Q  R)  (P  Q)  R
•P  (Q  R)  (P  Q)  R

• Idempotence:
•P  P  P
•P  P  P



Tautologies

•A tautology is a statement that is necessarily 
true.

•Example: P  P

•Any statement that evaluates to True in every 
row of its truth-table is a tautology.



Contradictions

•A contradiction is a statement that is 
necessarily false.

•Example: P  P

•Any statement that evaluates to False in every 
row of its truth-table is a contradiction.



Equivalences

•Two statements are equivalent if they have the 
exact same truth-conditions.

•Example: P and P

• In every row of their combined truth-table, two 
equivalent statements are either both true or 
both false.



Implication

•One statement implies a second statement if it 
is impossible for the second statement to be 
false whenever the first statement is true.

•Example: P implies P  Q

• In the combined truth-table, there is not a single 
row where the implying statement is true and 
the implies statement is false



Consistency

•A set of statements is consistent if it is possible 
for all of them to be true at the same time.

•Example: {P, P  Q, Q}

• In the combined truth-table of a consistent set 
of statements there is at least one row where 
they all evaluate to True.



Validity

•An argument is valid if it is impossible for the 
conclusion to be false whenever all of its 
premises are true.

•Example: P, P  Q  Q

• In the combined truth-table of a valid argument, 
there is not a single row where all premises are 
true and the conclusion is false.



The Principle of Substitution of Logical 
Equivalents

•Let us write S(P) for a sentence which has P as 
a component part, and let us write S(Q) for the 
result of substituting Q for P in S(P).

•The principle of substitution of logical 
equivalents states that if P  Q, then S(P) 
S(Q).

•Example: 
• Since Small(a)  Small(a), it is also true that 
(Cube(a)  Small(a))  (Cube(a)  Small(a)) 



Simplifying Statements

•Using the principle of substitution of logical 
equivalents, and using the logical 
equivalences that we saw before (Double 
Negation, Association, Commutation, 
Idempotence, DeMorgan, and Distibution), we 
can often simplify statements.

•Example: (A  B)  A  (Commutation)

(B  A)  A  (Association)

B  (A  A)  (Idempotence)

B  A



Negation Normal Form

• Literals: Atomic Sentences or negations thereof.

• Negation Normal Form: An expression built up 
with ‘’, ‘’, and literals.

• Using repeated DeMorgan and Double Negation, 
we can transform any truth-functional expression 
built up with ‘’, ‘’, and ‘’ into an expression that 
is in Negation Normal Form.

• Example:
((A  B)  C)  (DeMorgan)
(A  B)  C  (Double Neg, DeM)
(A  B)  C



Disjunctive Normal Form

•Disjunctive Normal Form: A disjunction of 
conjunctions of literals.

•Using repeated distribution of  over , any
statement in Negation Normal Form can be 
written in Disjunctive Normal Form.

•Example:

(AB)  (CD)  (Distribution)
[(AB)C]  [(AB)D]  (Distribution (2x))
(AC)  (BC)  (AD)  (BD)



Conjunctive Normal Form

•Conjunctive Normal Form: A conjunction of 
disjunctions of literals.

•Using repeated distribution of  over , any
statement in Negation Normal Form can be 
written in Conjunctive Normal Form.

•Example:

(AB)  (CD)  (Distribution)
[(AB)  C]  [(AB)  D]  (Distribution (2x))
(AC)  (BC)  (AD)  (BD)



Truth-Functional Connectives

•So far, we have seen one unary truth-functional 
connective (‘’), and two binary truth-functional 
connectives (‘’, ‘’).

• Later, we will see two more binary connectives 
(‘’,  ‘’)

•However, there are many more truth-functional 
connectives possible:

• First of all, a connective can take any number of 
arguments: 3 (ternary), 4, 5, etc.

• Second, there are unary and binary connectives 
other than the ones listed above.



Truth-Functional Expressive 
Completeness

•Since I can express any truth function using ‘’, 
‘’, and ‘’, we say that the set of operators {, 
, } is (truth-functionally) expressively 
complete.

•DeMorgan Laws:
• (P  Q)  P  Q
• (P  Q)  P  Q

•Hence, by the principle of substitution of logical 
equivalents, since {, , } is expressively 
complete, the sets {, } and {, } are 
expressively complete as well!



Proofs

A sequence of statements, starting with zero or 
more assumptions, where each of the 
statements is either an assumption, or an 
obvious logical consequence from (some of) the 
assumptions and previously inferred statements.



Proof by Contradiction

• ‘Assuming P to be the case, then I get some 
kind of impossibility or contradiction. Hence, 
contrary to my assumption, P cannot be the 
case.’

•This pattern of reasoning is called Proof by 
Contradiction (or Indirect Proof or Reductio ad 
Absurdum or simply Reductio).



‘’

•The symbol ‘’ is used to express a logical 
contradiction.

•Theorem: A statement  is a logical 
contradiction iff   

•Theorem: A set of statements is logically 
inconsistent iff {1, …, n}  



Soundness of Proof by Contradiction

•Theorem: 
• {1, …, n}   iff {1, …, n, }  .

•Proof: {1, …, n}   iff it is impossible for 
each 1 to be true and  to be false iff it is 
impossible for each 1 to be true and  to be 
true iff {1, …, n, }  .

•So, once we show that, given initial 
assumptions 1, …, n , the further assumption 
 leads to a contradiction (i.e. {1, …, n, } 
 ), we know that  is a logical consequence 
from the initial assumptions (i.e. {1, …, n} 
 ).



The Material Conditional

• Let us define the binary truth-functional 
connective ‘’ according to the truth-table 
below.

• The expression PQ is called a conditional. 
In here, P is the antecedent, and Q the 
consequent.

P P  Q

T

T
F

T

Q

T

TF

F

F
F
T
T



‘If … then …’ Statements

• The conditional is used to capture ‘if … then 
…’ statements.

• Although the match isn’t perfect, most uses of 
‘if … then …’ are captured fine with the 
conditional.

• In particular, any ‘if … then …’ statement will 
be false if the ‘if’ part is true, but the ‘then’ 
part false, and the conditional captures this 
important truth-functional aspect of any ‘if … 
then …’ statement.



‘If and only if’ and the 
Material Biconditional

• A statement of the form ‘P if and only if Q’ (or 
‘P iff Q’) is short for ‘if P then Q, and if Q then 
P’. Hence, we could translate this as (PQ) 
 (QP). However, since this is a common 
expression, we define a new connective ‘’:

P P  Q

T

T
F

F

Q

T

TF

F

F
F
T
T



Some Important Equivalences

• Implication:
– P  Q   P  Q

– (P  Q)   P  Q

• Transposition:
– P  Q   Q  P

• Exportation:
– P  (Q  R)   (P  Q)  R

• Equivalence:
– P  Q   (P  Q)  (Q  P)

– P  Q   (P  Q)  (P  Q)



Quantifiers



From Propositional Logic to Predicate 
Logic

•So far we have dealt with propositional logic

•The next step is to deal with predicate (or 
quantificational) logic.

•Predicate logic builds on propositional logic. 



Quantification: ‘All’ and ‘Some’

• In predicate logic, there are two quantifiers: ‘all’ and 
‘some’.

• Here are some examples: 
• x Mortal(x) ‘All things are mortal’
• x Mortal(x) ‘Some things are mortal’
• x (Human(x)  Mortal(x))   ‘Every human is mortal’
• x (Human(x)  Mortal(x))   ‘Some human is not 

mortal’



Parts of a Quantificational Statement 

•A quantificational statement such as 
x(Human(x)  Mortal(x)) has the following 
parts:
• Quantifier: In this case ‘’
• Variable: In this case ‘x’
• Well-formed formula, or wff: In this case 
‘Human(x)  Mortal(x)’ 



From Propositional Statements to 
Quantificational Statements

•Every quantificational statement can be made 
from a propositional statement:
• Start with a propositional statement with 
individual constants: Human(a)  Mortal(a)

• Change one or more individual constants into a 
variable: Human(x)  Mortal(x)

• Quantify the atomic wff (which is not a claim) to 
obtain a quantificational statement (which is a 
claim): x (Human(x)  Mortal(x))



Free and Bound Variables and the 
Scope of Quantifiers

• In the expression x (Human(x)  Mortal(x)), the 
variable x that occurs in the atomic wff Human(x) 
 Mortal(x) is bound by the quantifier , as 
indicated by the ‘x’ right after the quantifier.

• The parentheses indicate the scope of the 
quantifier.

• In the expression x (Human(x))  Mortal(x), only 
the first ‘x’ is within the scope of the quantifier, and 
thus bound. The second ‘x’ is free.

• Any expression with one or more free variables is 
not a claim!



Universe of Discourse

•When we quantify, we usually have some 
universe of discourse in mind. E.g. when I say 
“Everyone did well on the homework”, I am 
limiting myself to all students in this class. 

•When this is understood, I can simply write: x 
(PerformedWell(x)).

• If not, I can always limit myself as follows: x 
(Student(x)  PerformedWell(x)). 



Q & A
Please write any feedback regarding class to

sayans@slis.tsukuba.ac.jp
Sub: Informatics class feedback
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